RClamp5031T Low Capacitance RClamp® 5V, 1-Line ESD Protection

PROTECTION PRODUCTS - RailClamp®

Description

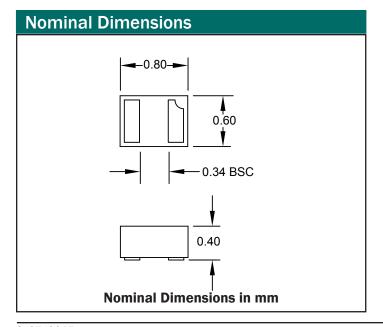
RClamp® TVS diodes are ultra low capacitance devices designed to protect sensitive electronics from damage or latch-up due to ESD, EFT, and EOS. They are designed for use on high speed ports in applications such as cell phones, notebook computers, and other portable electronics. These devices offer desirable characteristics for board level protection including fast response time, low operating and clamping voltage, and no device degradation.

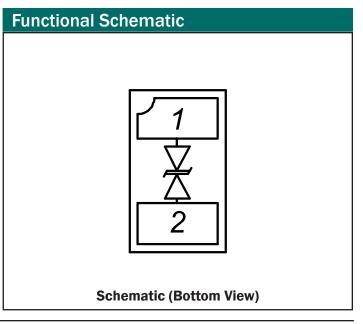
RClamp5031T feature extremely good ESD protection characteristics highlighted by low typical dynamic resistance of 0.25 Ohms, low peak ESD clamping voltage, and high ESD withstand voltage (+/-15kV contact per IEC 61000-4-2). Low maximum capacitance (0.45pF at VR=0V) minimizes loading on sensitive cirucuits. Each device will protect one high-speed data line operating at 5 Volts.

RClamp5031T is in a 2-pin SLP0806P2T package measuring $0.8 \times 0.6 \times 0.4$ mm. Leads are finished with lead-free NiPdAu. The combination of working voltage, low dynamic resistance, and low capacitance makes these devices ideal for use in applications such as HDMI, MHL, and USB 3.0.

Features

► Transient protection to IEC 61000-4-2 (ESD) 18kV (air), 15kV (contact) IEC 61000-4-4 (EFT) 40A (5/50ns) IEC 61000-4-5 (Lightning) 3A (8/20µs)


- Protects one high-speed data line
- ◆ Low capacitance: 0.45pF maximum
- Operating Voltage: 5V
- Low dynamic resistance: 0.25 Ohms (Typ)
- Low ESD clamping voltage
- ◆ Low leakage current
- Solid-state silicon-avalanche technology


Mechanical Characteristics

- ◆ SLP0806P2T package
- Pb-Free, Halogen Free, RoHS/WEEE Compliant
- ◆ Lead Finish: NiPdAu
- Molding compound flammability rating: UL 94V-0
- Marking : Marking codePackaging : Tape and Reel

Applications

- ♦ HDMI 1.4
- ◆ MHL
- ◆ USB 3.0
- ◆ MiPi / MDDI
- ◆ FM Antenna

Absolute Maximum Ratings

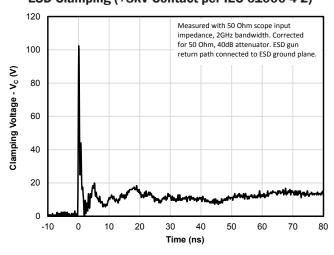
Rating	Symbol	Value	Units		
Peak Pulse Current (tp = 8/20μs)	I _{PP}	3	А		
ESD per IEC 61000-4-2 (Air) ¹	V	18	127		
ESD per IEC 61000-4-2 (Contact) ¹	V _{ESD}	15	kV		
Operating Temperature	T,	-40 to +85	°C		
Storage Temperature	T _{stg}	-55 to +150	°C		

Electrical Characteristics	(T=25°C unless of	therwise specified)
----------------------------	-------------------	---------------------

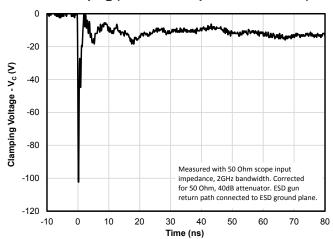
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Reverse Stand-Off Voltage	$V_{_{\mathrm{RWM}}}$	$T = -40 \text{ to } +85^{\circ}\text{C}$			5	V
Breakdown Voltage	$V_{_{BR}}$	I _{BR} = 10mA	6.5	9.5	10.5	V
Holding Current	I _H			50		mA
Reverse Leakage Current	I _R	V _{RWM} = 5V		<5	100	nA
Clamping Voltage	V _c	$I_{pp} = 3A, t_p = 8/20 \mu s$			10	V
ESD Clamping Voltage ²	V _c	$I_{pp} = 4A$ tp = 0.2/100ns		5.5		V
ESD Clamping Voltage ²	V _c	I _{pp} = 16A tp = 0.2/100ns		8.5		V
Dynamic Resistance ^{2, 3}	R _{DYN}	tp = 0.2/100ns		0.25		Ohms
Junction Capacitance	C _J	VR = OV; f = 1MHz		0.35	0.45	pF

Notes

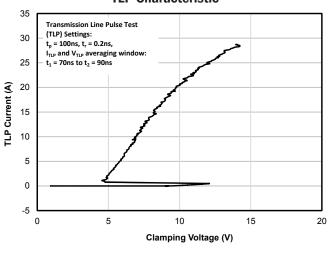
¹⁾Measured with a 20dB attenuator, 50 0hm scope input impedance, 2GHz bandwidth. ESD gun return path connected to ESD ground plane.

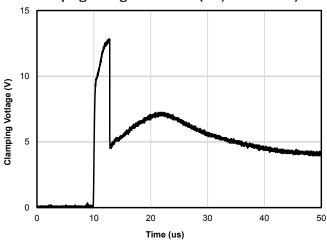

²⁾Transmission Line Pulse Test (TLP) Settings: tp = 100ns, tr = 0.2ns, I_{TLP} and V_{TLP} averaging window: t_1 = 70ns to t_2 = 90ns.

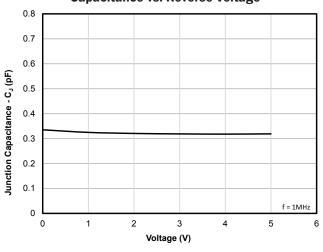
³⁾Dynamic resistance calculated from $I_{TLP} = 4A$ to $I_{TLP} = 16A$

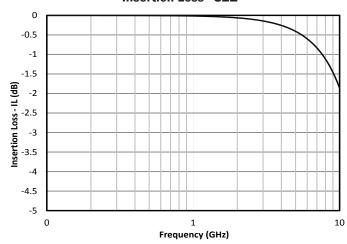


Typical Characteristics


ESD Clamping (+8kV Contact per IEC 61000-4-2)

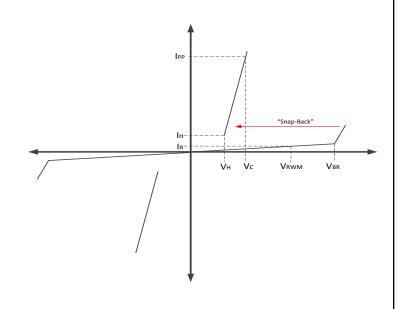

ESD Clamping (-8kV Contact per IEC 61000-4-2)


TLP Characteristic


Clamping Voltage Waveform (1.2/50us Pulse)

Capacitance vs. Reverse Voltage

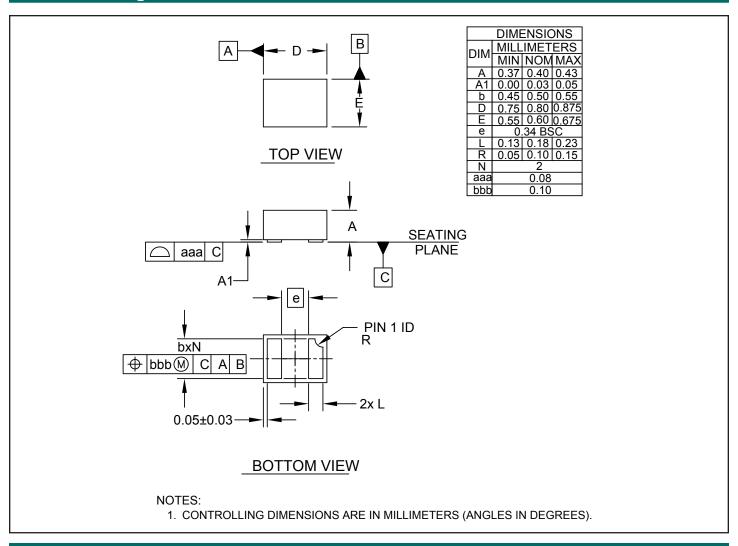
Insertion Loss - S21

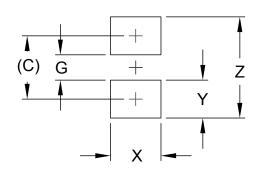


Applications Information

Device Operation

This device utilizes a multi-junction structure that is designed to switch to a low voltage state when triggered by ESD, EOS, or other transient events. During normal operation, the device will present a high-impedance to the circuit for voltage up to the working voltage (VRWM) of the device. When the voltage across the device terminals exceeds the breakdown voltage (VBR), avalanche breakdown occurs in the blocking junction causing the device to "snap-back" or switch to a low impedance on-state. This has the advantage of lowering the overall clamping voltage (VC) as ESD peak pulse current (IPP) flows through the device. Once the current decreases below the holding current (IH), the device will return to a high-impedance off-state. Since this device is bidirectional, it will behave the same way for positive or negative polarity transient events.


Symbol	Parameter
V _{RWM}	Maximum Working Voltage
V_{BR}	Breakdown Voltage
V _c	Clamping Voltage
I _H	Holding Current
I _R	Reserve Leakage Current
I _{PP}	Peak Pulse Current


Characteristic Curve

Outline Drawing - SLP0806P2T

Land Pattern - SLP0806P2T

	DIMENSIONS
DIM	MILLIMETERS
(C)	0.75
G	0.30
Х	0.60
Υ	0.45
Z	1.20

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.